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Abstract 

In the usual curved-space description of gravity, aclass offietds is defined which correspond 
to the fields of Newtonian gravitational theory. Using these fields, the field equations of 
Newtonian theory are formulated in a four-dimensional metric space. The equations are 
then modified so that they transform properly under the Lorentz transformation and so 
that their weak-field approximation is closely analogous to the equations of classical 
electrodynamics. The resulting equations lead to Newtonian theory in the non-relativistic 
limit, and they lead rigorously to the Schwarzschild field and to the known relativistic 
corrections associated with it. Finally, these field equations are compared with Einstein's 
field equations. 

1. Introduction 

During the last half-century, Einstein's theory has become the most widely 
accepted description of  gravity, but it has not yet led to a generally accepted 
unification of gravity with the rest of  physics. Many attempts have been 
made to provide such a unification, usually by retaining Einstein's descrip- 
tion of  gravity in terms of  a curved four-space but by generalizing or 
reinterpreting the rest of  the theory. Most of  these attempts involve com- 
plexities that are at least as great as those of Einstein's theory and are some- 
times much greater, even though it could well be argued that Einstein's 
theory is already far more complex than is really necessary. For example, 
Newton's theory of  gravity gives a very accurate description of  most 
gravitational phenomena in terms of  a single potential function, where 
Einstein's theory requires ten metric coefficients to give only a very few 
detectable corrections to Newton's theory. 

This great formal complexity has been accepted partly because of  the 
verifiable corrections that it makes to Newton's theory and partly because 
it offers a marked philosophical advance over Newtonian theory. For  
example, Newton's theory predicts the acceleration of  bodies relative to a 
primary inertial system which is fixed relative to the fixed stars, and in this 
way it relates the motion of  the fixed stars directly to the motion of a nearby 
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body even though there is no direct physical connection between them. In 
Einstein's theory, the motion of a body is described by the geodesic equa- 
tion, which refers only to the position of the body and to the metric field in 
its immediate vicinity. The metric field itself is determined from differential 
equations which do not refer to any remote system such as the fixed stars, 
and the fixed stars enter into the theory only as boundary conditions. Any 
change in these boundary conditions affects the motion of nearby bodies 
only because it is propagated through the intervening field, which then 
provides a physical connection between the body under observation and the 
fixed stars. 

Of course, it is always possible to formulate Newton's theory in generalized 
space-time coordinates so that the motion of the primary inertial system is 
described by field quantities which can be determined from differential 
equations somewhat analogous to Einstein's (Havas, 1964). However, the 
introduction of additional field quantities which can always be removed by 
an appropriate coordinatization seems somewhat artificial. Also, theories 
of this type involve at least as many unknown functions as Einstein's theory, 
and hence do nothing to reduce its complexity, while at the same time they 
predict none of Einstein's verifiable corrections to Newtonian theory. 
Thus, for both experimental and philosophical reasons, it seems desirable 
to describe gravity in terms of Einstein's curved Riemannian four-space, in 
which particles and light rays are assumed to move along geodesics. 
However, it will be shown in this paper that the complexity of Einstein's 
theory can be greatly reduced by considering a much smaller class of metric 
fields than was originally considered by Einstein. This procedure keeps the 
philosophical advantage of Einstein's theory and will also keep most of its 
verifiable corrections to Newtonian theory if only the Schwarzschild field 
is included in the allowed class of metrics. 

The first step will be to consider only the metrics which correspond to the 
fields of Newtonian gravitational theory and to use these metrics to formu- 
late the Newtonian field equations within the framework of a curved metric 
four-space. It will then be shown that the resulting field equations can be 
made to transform properly under the Lorentz group if the allowed class of 
fields is permitted to be slightly larger than just the Newtonian fields but 
still much smaller than the class of fields usually considered in Einstein's 
theory. The metrics of interest will be those in which the three-dimensional 
geometry is Euclidean, with the result that much of the formal complexity 
usually associated with Einstein's theory is removed. However, its philo- 
sophical advantages over Newtonian theory are kept, as are also all of its 
corrections to Newtonian theory in the Schwarzschild field. Furthermore, 
the Lorentz-invariant extension of the Newtonian field equations can be 
made more closely analogous to Maxwellian electrodynamics than are 
Einstein's field equations, a result which is highly desirable in any attempt 
to unify physics. 

Finally, the field equations derived here will be compared directly with 
Einstein's equations. 



A METRIC-SPACE FORMULATION OF NEWTONIAN FIELDS 135 

2. Newtonian Fields 

It will be assumed here that any gravitational field can be described by a 
curved Riemannian four-space whose metric coeff• g ~  determine the 
local time dr measured by a moving clock by means of  the relation 

--C 2 dr 2 =ger dx~ dx~ (2. I) 

where x~ are any four coordinates which span the space and e is the velocity 
of light. In this equation, and throughout this paper, the notation is adopted 
that Greek indices run from one to four and repeated Greek indices are 
summed from 1 to 4, while Roman indices wilt run from 1 to 3 and repeated 
Roman indices will be summed from 1 to 3. It will be further assumed 
throughout this paper that the paths of  test particles and light rays are 
geodesics of  the metric g~ .  These assumptions are common and need no 
further discussion. 

Newtonian gravitational theory can be described in this framework by 
considering a particular class of  metrics which have been shown previously 
to correspond to the fields of  Newton's theory (Kirkwood, 1970). The 
first requirement placed on these metrics is that there must exist a Newtonian 
time function t such that the three-dimensional geometry on the surface 
defined by a constant value of t is Euclidean. For such fields, the time-like 
coordinate x4 can be chosen to equal t and the remaining three coordinates 
& can be chosen to be Cartesian coordinates in the Euclidean three-space. 
In these coordinates the metric coefficients g ~  satisfy the three-dimensional 
relation 

g~j = 8~ (2.2) 

where 3,j is the identity. 
The motion of  a particle in such a field is governed by the geodesic 

equation, which can be written in the form 

d z x~ dx~ dxy 
g~O-dr 2 =-(f lY '  e) dr- -dfr (2.3) 

If  this equation is multiplied by dx=/dr it reduces to 

d [ dx~ dx~'~ 
= 0  

which is satisfied identically because of  equation (2.1). Thus it is clear that 
if equation (2.3) is satisfied for e = 1, 2, 3 and ifdx4/dr # O, then equation 
(2.3) will automatically be satisfied for e = 4 by virtue of  equation (2.1), so 
that it is sufficient to consider equation (2.3) only for the three values of a 
of  1, 2 and 3. Noting that the metric coefficients are assumed to satisfy 
equation (2.2), it is then readily shown that equation (2.3) can be written 
in the completely three-dimensional form 

d2x,=[(Og,4 ag~4]dx, Og,4 lOg4,][dx4\ 2 dax4 
dr 2 L~ Ox, Ox,] d x 4 0 x 4  + 2-0-X-7] t -~r  ~) --g*4-~ra (2.4) 
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This is the exact equation of  motion of a particle in a field in which equation 
(2.2) is satisfied. The usual equation of motion of  Newton's theory is the 
non-relativistic approximation of equation (2.4), in which the time measured 
by a moving clock is approximately equal to the time variable x4, so that 
dx4/dr = 1, d2x4/d'r 2 = 0, and d2xdd'r 2 is the acceleration of the moving 
particle, which is then given by the quantity in brackets in equation (2.4). 
This quantity is the gravitational force per unit mass, which in Newton's 
theory is independent of  the particle velocity and equal to the negative 
gradient of the Newtonian potential V. If the bracketed quantity in equation 
(2.4) is to be independent of the particle velocity, it must be that the quantity 
in parentheses vanishes, which is equivalent to the requirement that a 
function/3 exists such that 

0/3 (2.5) 
gi4 --  OX l 

Then the bracketed quantity takes the form -OV/Ox, if 

V = -  0/3 g44 c2 
Ox4 2 2 (2.6) 

where the constant -c2/2 is added to make V ~ 0 in the region far from any 
masses, where O/3/ax4 ~ 0 and g44 "-->" --C2. From equations (2.2), (2.5) and 
(2.6), it is seen that the metric four-space is of  the type described by Newton's 
theory if there exist two functions/3 and V and a set of coordinates x~ such 
that the metric tensor in the coordinates x~ takes the form 

g~j = 3~j (2.7a) 
a/3 

gf4 = --  ~ (2.7b) 

g44 = - 2 V -  2 ~xfl4 - c 2 (2.7c) 

Fields of this type will be called Newtonian fields. It has been shown pre- 
viously (Kirkwood, 1970) that if V =  -KM/r  and/3 = -(8KMr) 1/2, where 
r = (xl 2 + xz 2 + x32) 1/2, the metric coefficients of  equations (2.7a)-(2.7c) 
can be reduced to the Schwarzschild field. Thus, in the non-relativistic 
approximation, the Newtonian fields give rise to all of Newton's theory of  
gravity, and when the exact geodesic equations are used to describe the motion 
of particles or light rays, the Newtonian fields yieM all of the relativistic 
corrections that have been verified experimentally in the SchwarzschiM field. 
From this it is clear that the Newtonian fields are a very important class of  
fields, and might conceivably be the only fields that occur in nature. 

The possibility that Newtonian fields may admit of an invariance similar 
to the usual Lorentz invariance of  the electromagnetic field has been 
investigated previously (Kirkwood, 1970). A generalized Lorentz transfor- 
mation has been defined in such a way that it makes the intrinsic properties 
of  space and time as nearly invariant as possible, while the gravitational 
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field quantities are allowed to transform in any way that is convenient, 
following the pattern of  the usual Lorentz invariance of electromagnetism. 
The resulting transformation group leaves the time variable t invariant, so 
that it cannot be the time-like coordinate in more than one Lorentz frame, 
and it is at least possible that it may not be the time coordinate in any 
Lorentz frame. This invariant time-like function, similar to Newton's 
universal time, will be seen to play an important role in the formulation of 
gravity that will be given here. The existence of such an invariant time 
function does not conflict with the Lorentz invariance of the theory; in 
fact, it arises quite naturally from it. 

3. The Field Equations 

It has been shown that the gravitational fields of Newton's theoryare  
fields for which there exist coordinates in which the metric coefficients can 
lze expressed in the form of equations (2.7a)-(2.7c). To complete Newtonian 
theory, it is only necessary to add the requirement that in these coordinates 
the Newtonian potential function V satisfies Poisson's equation, 

V 2 V = 4rrK/~ (3.1) 

where V 2 is the three-dimensional Laplacian operator, Kis the gravitational 
constant and/~ is the density of the mass that is producing the field. All of 
these conditions will now be formulated into a set of field equations that a 
curved four-space must satisfy if it is to describe one of the gravitational 
fields of  Newtonian theory. 

I f  the field is described by the metric coefficients g,,~, then the first require- 
ment that the g ~  must satisfy if  the field is to be Newtonian is that there 
must exist a time-like function t such that the three-dimensional geometry 
determined by g~,~ on a surface on which t is constant is Euclidean. The 
condition that t is time-like is that 

Ot Ot 
g ~ ' ~ - - - - <  0 

Ox~ Ox~ 

from which it follows that there is a positive real function c~ such that 

Ot Ot 1 (32) 
g~' ~ Ox~, Ox ~ o~ 2 

Letting 

and defining the tensor 

Ot (3.3) t ~, _- g~,t~ ax/3 

h~/~ _- g~g + ~2 t ~ tg 

it is seen from equations (3.2) and (3.3) that 

h ~  0-~ = 0 

(3.4) 

(3.5) 
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The significance of the tensor h ~# is easily seen in a system of coordinates in 
which x4 = t, where equation (3.5) shows that h ~4 vanishes. The remaining 
components h ~j in these coordinates are the reciprocal of the three- 
dimensional metric g~j, as can be shown by multiplying equation (3.4) by 
g~y and observing that for o~, 7' = 1, 2, 3 the resulting relation reduces to 
h~Jgjk = 8~ ~. The condition that the geometry must be Euclidean in the three- 
space defined by a given value of t is that the curvature tensor in this space 
must vanish, which, in a three-space, is equivalent to requiring that the 
contracted curvature tensor must vanish. Let the coordinates be chosen so 
that x4 = t and let the curvature tensor in the three-space of xt, x2 and x3 
be denoted by p~jkz and its contraction by pu, so that 

Pu = h~ P~m (3.6) 

where h Jk is the three-dimensional reciprocal o fg~  defined above. Then the 
desired condition that a constant value of t (or x4) will define a Euclidean 
three-space is that 

p .  = 0 (3.7) 

This can be expressed in four-dimensional notation by extending P,ju 
and p .  into four dimensions in the following way. First, it is noted that in 
coordinates in which x4 = t, p,~k, can be written 

(fl ,  i) - ~ ( j k ,  i) + h" ' [ ( jk ,  m)(i l ,  n) - (jl ,  m) ( i k ,  n)] Pijkl 

(3.8) 

where the quantities (jl ,  i) are the usual three-dimensional Christoffel 
symbols. However, since x4 = t, the quantities h ~'4 defined above vanish, 
and the sums over m and n in equation (3.8) can be extended from 1 to 4 
without altering the equation. Then, defining the four-dimensional 
quantity 

p ~  - (sa .  ~) - g~x, (t37". ~) + ha,[~7". ~)(~,a. ~) - (~a. ;~)(~,7'. ~,)l 

(3.9) 

where (/38, ~) is the four-dimensional Christoffel symbol and where h a~ is 
given by equation (3.4), it is seen that p~,~,~ equals p~ju when x4 = t and the 
indices run from 1 to 3. Writing h a~' in the form given by equation (3.4) and 
noting that in coordinates in which x4 = t the second covariant derivative 
of t can be written 

a2t 
t;~,~ = ax~,ax~ (~/3,7')tr  =-(~,/3,7')t~" 

it is found that equation (3.9) can be written 

P=t3y~ = R~/3y~ + ~2(t;13y t ;~ - t ;~ t;=z) (3.10) 

where R~,t~:, ~ is the four-dimensional curvature tensor constructed from g~,~. 
If  p~,/~y~ is defined in arbitrary coordinates by the usual rule for the transfor- 
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mation of a covariant tensor, then equation (3.10) is a tensor equation and 
holds in any coordinates, because o~ 2 is an invariant by equation (3.2). 

Similarly, pu can be extended into four dimensions by noting that the 
sums over j  and k in equation (3.6) can be extended from 1 to 4 without 
affecting the equation, because h ~4 = 0 when x4 = t. Then a four-dimensional 
tensor p~/3 can be defined in these coordinates by the relation 

P~ = h ~' P~/3~,~ (3.11) 

where p~,~ is given by equation (3.9). The spatial components of p~, will 
be the p ,  of equation (3.6), and the condition that the three-space associated 
with a given value of t will be Euclidean will be that p ,  = 0. 

I f  pu = 0 it will be possible to choose the three spatial coordinates x~ so 
that g~j = 3~j. In these coordinates h is will equal 3~j and h ~4 will vanish, so 
that the remaining components of  p~,  namely the components P~4, can be 
expressed from equations (3.9) and (3.11) in the form 

P~4 = 0-~ (i4, ~) - b O  ( ii, o,) + (ii,j)(o:4,j) - (i4,j)(oa,j) 

If  the Christoffel symbols are evaluated for a metric for which gti = 8,j 
then the three-dimensional (i j, k) vanishes, and the above equation can be 
written 

(~x, (i4, ~) (e = I, 2, 3) 

P~4 
(/4, 4) -- O (ii, 4) - (i4,j) (4i,j) (o~ = 4) 

which finally becomes 

1 o Og,q 
P,4 = - 2 0xj ~ Ox~ Oxj ] (3.12a) 

1 02g44 02g,4 !(Ogi4 0gJ4~[Ogi4 0gj4~ 
P44 = 20xi Oxi Ox40x~ 4 ~, Oxj Oxi ] \ Ox~ Ox~ ] (3.t2b) 

In addition to the requirement that the three-dimensional geometry be 
Euclidean in coordinates in which x4 = t, a Newtonian field must satisfy 
equation (2.7b) in these coordinates, which is equivalent to requiring that 

Ogi4 Ogj4 = 0 (3.t3) 
0x~ ~x, 

From equation (3.12a) this obviously implies that 

P~4 = 0 (3.14) 

Not only is equation (3.14) a necessary result of equation (3.13), but, when 
used with appropriate boundary conditions, it is sufficient to insure that 
equation (3.t3) must be satisfied. To show this, it is convenient to define a 
three-dimensional vector a whose components are cg~4. Then the condition 
that joi4 = O can be written from equation (3.12a) in the form VxVxa =0. 
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It is known that if the divergence and curl of a vector vanish in any volume 
and if the normal component of the vector vanishes on the surface bounding 
that volume, then the vector must vanish everywhere in the volume. 
Since V.(Vxa) vanishes identically, it is only necessary to require that 
VxVxa vanish and that Vxa satisfy appropriate boundary conditions to 
insure that Vxa vanishes everywhere, and hence that equation (3.13) is 
satisfied. Thus equations (3.7) and (3.14), when taken with appropriate 
boundary conditions, are both necessary and sufficient to insure that the 
field is Newtonian. 

Finally, if the field is Newtonian, so that g~4 and g44 are given by equations 
(2.7b) and (2.7c), equation (3.12b) becomes 

t044 = __~72 V 

If it is further required that V must satisfy Poisson's equation, then from 
equation (3.1) it is only necessary to let p44 = --4zrKp~. A complete and exact 
description of the fieIds of Newtonian theory ~s given by this relation, equations 
(3.7) and (3.14), and appropriate boundary conditions. The field equations 
then are 

p~j = 0 (3.15a) 

pl4 = 0 (3.15b) 

P44 = --4rrK/~ (3.15c) 

These equations can be easily expressed in arbitrary space-time co- 
ordinates by writing p=~ in the form of equation (3. t t), where P~t3y~ is given 
by equation (3.10) and h ~e is given by equation (3.4). This gives 

p~,~ = (g~Y + cd t~ t 7) [R~7~ + c~2(t;/~, t;~ - t;/3~ t;~,~)] (3.16) 

where ~2 is given by equation (3.2). Since t is an invariant function, the right- 
hand side of this equation is obviously a tensor, so that the quantities p~  
defined in an arbitrary system of coordinates by equation (3.16) will trans- 
form as a tensor and will reduce to the quantities on the left-hand side of 
equations (3.15a)-(3.15c) in the particular coordinates in which x4= t. 
The right-hand side of equations (3.15a)-(3.15c) can be written in tensor 
form by noting that in these coordinates Ot/Ox~ = (0001), and equations 
(3.15a)-(3.15c) can be written in the four-dimensional form 

4rrK. Ot Ot 
p~r = -  /z 0-~ 0~-/3 (3.17) 

where p,g is given by equation (3.16). This form of the equations holds in 
any coordinate system. 

4. A Lorentz Invariant Extension of Newtonian Theory 

The investigation of the Lorentz invariance of Newtonian fields that has 
been reported previously (Kirkwood, 1970) shows that the generalized form 
of the Lorentz transformation treats the three functions/3, V and t as 
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invariants and leaves the functional form of  the metric coefficients g ~  the 
same in all Lorentz frames when g~/~ is expressed in terms offl, V and t and 
their partial derivatives. It is seen from equation (3.t6) that p ~  can be 
expressed in arbitrary space-time coordinates in terms orgy,/3 and t and their 
partial derivatives, so that p~,/3 will have the same functional form in all 
Lorentz frames when it is expressed in terms of f l ,  V and t and their partial 
derivatives. Since t is invariant, the right-hand side of equation (3.17) will 
have the same form in any Lorentz frame if K/~ is transformed as an 
invariant function. As a result, the functional form of  equation (3.17) will 
be the same in all Lorentz frames, and the theory will be Lorentz invariant 
if K/z is invariant under the generalized Lorentz transformation. 

However, it is usually assumed that K is a constant which has the same 
value in all Lorentz frames and that/~ is the same mass density that gives rise 
to inertia, in which case it is well known that/~ is not invariant under the 
Lorentz transformation and K/~ is not an invariant function. In the descrip- 
tion of fluid mechanics in the special theory, the inertial mass density appears 
as one component of the stress-energy-momentum tensor P ~  associated 
with the ponderable matter. This tensor vanishes where there is no matter, 
and is defined in coordinates in which x4 = t by the relations 

P ~  = S ~1 +/xu ~ u j (4.1a) 

p~4 =/zu ~ (4.1b) 

p44 = / ,  (4.1c) 

where/~ is the mass density, u * is the three-dimensional velocity of the fluid 
and S ~ is the three-dimensional stress tensor, defined so that the mechanical 
force per unit volume is the negative divergence of SIL If/z is to transform 
like P44 instead of being an invariant, then/~ should enter into physical laws 
only through tensor relations involving P ~ .  This suggests that the right- 
hand side of equation (3.17) should be replaced by a tensor that is formed 
entirely from P"~ and g ~  and does not involve t. If  this tensor is to remain 
proportional to the amount of matter present, then it should be linear in 
P ~ ,  and equation (3.17) will be replaced by 

p~,[~ = A(P~,[3 + BPg,,t3) (4.2) 

where P ~ - g ~ , y g t ~ P ~ ' ~ ,  P--g, ,~P~[~ and A and B are undetermined 
constants. 

Although equation (4.2) is a natural Lorentz invariant extension of 
Newtonian theory, it is only meaningful if all of  the quantities P ~  are 
known. In Newtonian theory the masses and motions of  the bodies that 
produce the field, as described by/z and u ~, are assumed to be known, but 
the internal stresses S *J are not known. Instead, it is assumed in Newtonian 
theory that the three-dimensional geometry is Euclidean everywhere, so 
that p,j must vanish in coordinates in which x4 = t. The most direct Lorentz 
invariant extension of Newtonian theory is then described by equation (4.2) 
in which the quantities S IJ contained in p~/3 are taken to have the particular 
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values that will make p~j vanish in coordinates in which x4 = t. If  S ~a is 
defined in this way, then the three spatial coordinates can be chosen to be 
Cartesian and g~j will equal 3~a. For a metric tensor of  this form, the 
quantities P~/3 are found directly from the fact that they equal g~g~P~'~ ,  
where PY~ is given by equations (4.1 a)-(4, lc), and they are 

Pij = S l~ + I~(U ~ + gi4)( uj + gj4) (4.3a) 

ei4 = S i j  gj4 +/L(g4j uJ + g44)( u~ + gl4) (4.3b) 

P44 = g~4 gj4 S ~j +/~(g~4 u~ + g44) 2 (4.3c) 

The quantity P is given by 

P = SU +tz(  ui + g~4)(u ~ +gi4) +/~g (4.4) 

where g is the determinant o f g ~  and is given by 

g = g44 -- gi4gi4 (4.5) 

Putting equations (4.3a)-(4.3c) and (4.4) into the right-hand side of equation 
(4.2) shows that p~j will vanish i f S  ~j is assumed to be 

SfJ = -11"( ui + gi4)( uJ + gj4) - B [S kk +/z(uk + gk4)( ut~ + gk4) + big] 3ij 
(4.6) 

If  this is contracted and solved for S kk, it is found that 

Skk = --/z( uk + gg4)( uk + gk4) 

and equations (4.4) and (4.6) can be written 

3B 
(4.7) 1 + 3B tLg 

1 
P -  1 + 3B txg (4.8a) 

B 
SiJ = - /z(  ut + g14)( uJ + gj4) 1 + 3B tzg3tj (4.8b) 

Using these results in equations (4.3b) and (4.3c) gives 

B 
.Pi4 = tzg(u ~ + gl4) 1 + 3B tzg gi4 (4.9a) 

B 
P44 =/zg[2( ut § gt4)gi4 + g] 1 + 3B/zg g~4 g14 (4.9b) 

From these, the non-vanishing components on the right-hand side of  
equation (4.2) are found to be 

A(P~4 + BPg~4) = Atzg(u ~ + gt4) (4.10a) 

l + 4 B  ] 
A(P44 + BPg44) = Al~g 2(u i + gi4)g~4 + ~ - ~ - B g J  (4.10b) 
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In order that equation (3.17) will be the non-relativistic limit of equation 
(4.2), the constants A and B must be such that the right-hand sides of 
equations (4.10a) and (4.10b) approach the values 

Alzg(u ~ + g~4) ~ 0 (4.11a) 

Al~g[2(u l , 1 + 4B ] q- gi4) gt4 + ~ g ]  -> -47rK/z (4.11 b) 
L 

in the limit as c -~- oo. In this limit the determinant g will be approximately 
- c  z, and the term 2(u ~ + gl4)gi4 will be negligible compared to g(1 + 4B)/ 
(1 + 3B), with the result that equation (4. I 1 b) gives 

4rrK1 + 3B 
A = - -  c4 t + 4B (4.12) 

Since A vanishes as 1/c 4, equation (4.11a) is automatically satisfied, and 
equation (4.2) becomes equation (3.17) in the non-relativistic limit, as 
desired. If the right-hand side of equation (4.2) is evaluated from equations 
(4.10a) and (4.10b) with this value of A and the left-hand side of equation 
(4.2) is evaluated from equation (3.12a) and (3.12b), the Lorentz invariant 
extension of the Newtonian field equations is found to be 

O_ (Og~, Og,,~=8rrKgl + 3B . , , 
Oxj\Oxi Oxj] c 4 1 +4-B t~(u +gi4) (4.13a) 

1 02g44 02gi, 1 (0g' ,40gj4~[Ogi4 OgJ4~ 
2 Ox~ Oxi Ox4 Oxi 4 \ Ox i Oxi ] ~ Oxj Ox~ I 

l + 3 B  , . "1 
-- 47rKgl~[g + 2 f T ~ B ( u ' +  g,4)g,4 (4.13b) 

Because it cannot be generally assumed that/x(u~ + gi4) vanishes, it is 
clear that equation (4.13a) cannot always be satisfied by metrics for which 
g~4 = -afl/Ox~, with the result that these equations lead to fields which will 
not be exactly of the form of equations (2.7a)-(2.7c), and hence will not be 
exactly Newtonian. However, the fact that equations (4.13a) and (4.13b) 
become the equations of Newtonian theory in the non-relativistic limit 
shows that the fields that they determine will usually differ only slightly from 
Newtonian fields. For any set of three functions g~4 it is always possible to 
find three functions/3, 0 and ~ such that 

and for fields of physical interest it is clear that the second term on the right 
will be only a small correction to the first term. Ifa function Vis then defined 
so that 

= - 2  V -  2 0/3  z 0~ -c +20  g44 OX4 
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then any set of metric coefficients which satisfy equations (4.13a) and (4.13b) 
can be written in the form 

_2v__atat o( Ot aS Ot 05\ 
go,~=%[~ ax~Ox + \Ox~Ox +ff}-x-~x~) (4.14) 

where 

a/3 
crl4 = ~X  l 

0 "44  ~ - -  C 2 - -  2 

The generalized Lorentz transformation that has been defined previously 
leaves the functional form of the quantities %~ unchanged if/3 is treated as 
an invariant function. If V, t, 0 and q~ are defined in the new Lorentz frame 
as invariants, it is clear that the functional form of g,*t~ given by equation 
(4.14) will be the same in all Lorentz frames. As a result, equation (4.2) will 
take the same form in all Lorentz frames when p~,~ is expressed in terms of the 
functions/3, V, t, 0 and ~ and their partial derivatives, and the entire theory 
will be Lorentz invariant. Because the terms in 0 and ~b do not vanish, the 
Euclidean nature of three-space will not be exactly preserved even under the 
infinitesimal transformation. However, the change in the three-dimensional 
geometry will be very small when the terms involving 0 and ~ are very small, 
as is true in most physical fields. 

In addition to the fact that equations (4.13a) and (4.13b) transform in 
a way which is consistent with the known transformation law for a mass 
density and reduce to Newtonian theory in the non-relativistic limit as 
c -+ % they are also satisfied exactly by the exterior Schwarzschild field. 
To show this, it is only necessary to observe that the spherical symmetry of 
this field implies that g~4 is radial and has a magnitude that depends only 
on the distance from the centre of symmetry. In such a field there is always a 
function/3 such that gi4 = --af l /OXt ,  and hence equation (4.13a) is satisfied 
in the exterior region where t* = 0. Defining V by equation (2.7c), it is seen 
that equation (4.13b) becomes Laplace's equation for V in the exterior 
region where/~ = 0. The spherically symmetric solution of this equation is 
the one given in Section 2, where tile parameter M must be evaluated by 
integrating equation (4.13b) over the region in which/z does not vanish. 
Carrying out this integration, and making use of equation (4.13a), leads to 

M _ I  l + 3 B  - ~ f ~g[g +i-T-~(u + g~4)gi4]dv (4.15) 

Obviously, in the non-relativistic limit in which g'm-c z and c -+  0% 
M ,,~ S I zdv, and M is just the total mass producing the field. The exact value 
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of M differs from this total mass only by small relativistic corrections. 
Since minor relativistic corrections to the value of M are much less than 
the probable error in estimating the mass of the sun, they will have no 
measurable effect on the verifiable predictions of the theory. Thus equations 
(4.13a) and (4.13b) transform properly under the generalized Lorentz trans- 
formation, yield Newtonian theory in the non-relativistic limit, and also yield 
the Schwarzschild field, so that they lead to all of  the relativistic corrections 
to Newtonian theory that have been verified in that field. 

5. The Analogy to Electromagnetism 

Because most of the observed facts concerning gravity are correctly 
described by equations (4.13a) and (4.13b) for any value of the parameter B, 
there does not appear to be any way to evaluate B from gravitational obser- 
vations alone. However, if it is assumed that gravity and electromagnetism 
are just different aspects of a unified field, it is natural to expect that they 
will be very similar when they are both properly formulated. In particular, 
since electromagnetism is linear, it seems likely that electromagnetism may 
be a weak-field approximation of the unified field, which suggests that the 
weak-field approximation of equations (4.13a) and (4.13b) should have a 
form very similar to the usual form of electromagnetism. It will now be 
shown that this analogy suggests a value for B. 

The similarity between equations (4.13a) and (4.13b) and electro- 
magnetism is already quite striking, and is made even more apparent if a 
three-dimensional vector a is defined to have the components cgi4 and 
the vectors e and b are defined by the vector relations 

e = V g44 1 0 a  
2 c Ox4 (5.1 a) 

b = Vxa (5. t b) 

Then e and b satisfy the identical relations 

1 0b 
Vxe c Ox4 (5.2a) 

v .  b = 0 (5.2b) 

and equations (4.13a) and (4.13b) can be written 

8~rKgl+3B ( 1 ) 
Vxb c 3 1 +4-B/~ U + e a  (5.3a) 

b 2 4rrKg [ 2 1 + 3 B [  ! )  ] 
V.e--~cc2= c4 p, gq c l ~ U +  a .a (5.3b) 

10 
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where u is the vector whose components are u ~ and b 2 = b.b. The motion of 
a particle whose position vector is r is given by equation (2.4), which takes 
the form 

d 2 r  [ 1 dr • b\ [dx4\= lad2X4 " (5.4) 

If  this is written with an independent variable x4 instead of ~- on the left- 
hand side, it becomes 

d2r 1 dr x b _ / d r  +1  "~[d'r'~2d2x4 
ax42 = e +  ax, ;") (5.5) 

The weak-field approximation of these equations is found by assuming 
that the field quantities can be treated as infinitesimal. In particular, it will 
be assumed that (1/c)a can be neglected relative to the particle velocity 
dr/dx4 or to the velocity u of  the mass distribution producing the field. It 
will also be assumed that the term b 2 is negligible and that g ~  is so close to 
the flat-space metric that g can be approximated by - c  z. Also, since a is 
small, the term (2/c)[(1 + 3B)/(1 + 4B)](u + a/e).a will be neglected 
relative to g. Neglecting (l/e) a relative to dr/dx4 in equation (5.5) and 
rewriting this equation with ~ as independent variable gives 

d z r [dx4"~ 2 [ 1 dr • b'~ ) (5.6) 

If  this is multiplied by the rest-mass density/z o and it is observed that the 
force per unit volume is defined so that it equals t~od(dr/d'r)/dx4 and that the 
mass density tz equals/z 0 dx4/d% it is seen that the force per unit volume is 

/~ e + c-~x4 x b  

This is exactly analogous to the Lorentz force of electromagnetism if 1~ is 
the analog of the charge density and e and b are the analogs of the electric 
and magnetic field intensities. The weak-field approximations of equations 
(5.2a), (5.2b), (5.3a) and (5.3b) are 

1 0b 
Vxe (5.7a) 

c 8x4 

V.b = 0 (5.7b) 

8~K 1 + 3B 
Vxb (5.7c) e 1+4/} /m 

V. e = -4rrKp~ (5.7d) 

It is seen that the coefficient B, which drops out in the non-relativistic 
approximation, enters into the weak-field approximation, so that these 
equations will be close analogs of Maxwell's equations for only one value 
of B. 
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Equations (5.7a) and (5.7b) are exact analogs of two of Maxwell's equa- 
tions. Equation 5.7d is closely analogous to the equation for the divergence 
of the electric field, and equation (5.7c) will be similarly analogous to the 
equation for the curl of the static magnetic field if the factor (1 + 3B)/ 
(t + 4B) has the value �89 that is, if B = ---~. Using this value of B, equations 
(5.7a)-(5.7d) are 

1 0b 
cax, V x e  . . . .  (5.8a) 

V.b = 0 (5.8b) 

V x h  = - ( 5 . 8 c )  
41rK /zu 

C 

V. e = --47rKb~ (5.8d) 

These equations are analogous to the electromagnetic equations except for 
the fact that the displacement current term is missing. Because of this, the 
theory does not predict gravitational waves, which is not too surprising 
for any simple extension of Newtonian theory. 

The result of this analysis is a set of gravitational field equations which 
are Lorentz invariant and reduce to Newtonian theory in the non-relativistic 
limit. They also give the Schwarzschild field and all of the relativistic 
corrections to Newtonian theory that are found in the Schwarzschild field. 
In fact, it appears that the only observational evidence about the gravita- 
tional field that is not properly predicted is the existence of gravitational 
waves. Finally, the equations are closely analogous to the electromagnetic 
field equations, which is very desirable if gravity and electromagnetism are 
to be unified. 

The resulting description of the gravitational field is given by equation 
(4.2), where A is given by equation (4.12) and B = --~z, that is, 

2~rK 
P~t3 = -- ---~-(P~,13 -- {eg,,~) (5.9) 

When the stress components have been chosen so that the three-dimensional 
geometry is Euclidean in the three-space defined by a given value of t, these 
equations can be written in Cartesian coordinates with x4 = t in the three- 
dimensional form given by equations (4.13a) and (4.13b) with B=--~, 

a [ag 4 ag.X_ 4 Kg (u' 
axj ax, +g") (5.10a) 

102g44 02g,4 l (Og,4 Og,4] [Og,, Og,4~ 
2axfax I ax4ax  t 4 ~ - 3 j  axf]~axj a x i f  

4~'Kg [g 
=---"~1~ + (u* + gt4)gt4 ] (5.10b) 

which is 

10" 
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6. The Relation to Einstein's Theory 
Einstein's field equations can be written 

8~'K 
R~g = - --b-u(T~,o - �89 (6.1) 

where T ~  is the total stress-energy-momentum tensor, including both P~t3 
and the stress-energy-momentum tensor associated with physical fields 
such as the electromagnetic field. These equations differ from the extended 
form of Newton's theory described by equation (5.9), in that the tensor 
P,,~ is replaced by T~g, the numerical coefficient 2 on the right-hand side is 
replaced by 8 and the tensor p~/3 is replaced by the contracted curvature 
tensor R~,/3. 

The first of these modifications is a very natural one from the point of view 
of Newtonian theory. Although the possibility that a field might produce an 
effective mass was not recognized at the time when Newtonian theory was 
developed, there is no doubt that the mass involved in Newton's theory is 
the total mass, regardless of whether it is 'true' mass or is the result of the 
energy of a field, so it is natural to assume that the stress-energy- momentum 
tensor in the field equations should include the stress, energy and momentum 
of fields as well as of ponderable matter. 

The second modification, namely the difference in the numerical co- 
efficient on the right-hand side, arises directly from the assumption that the 
stresses within matter are the ones that are consistent with a Euclidean three- 
dimensional geometry. With this assumption, equation (5.9) leads to the 
stresses given by equation (4.8b) with B = --~2, which include a term -/zg 3~j 
which increases as c 2 in the limit as c ~ ~ because g is approximately - c  2. 
This behaviour of S .3 is very different from the one usually assumed in 
Einstein's theory, namely that S i~ is so small it can be neglected. The 
effect of this on the field equations can be seen by evaluating the quantity 
P ~ -  �89 approximately for large values of c. It will be sufficiently 
accurate for this purpose to assume that g~/3 is equal to the flat-space metric, 
which vanishes off the diagonal and has diagonal values of 1, 1, 1 and - c  2, 
and to keep only terms in P ~ -  �89 which might increase at least as 
rapidly as c 2 when c ~ ~.  When p~/3 is given by equations (4.1a)-(4.1c) 
andP~/3 --- g~,v.g~P ~'8, where g~, is the flat-space metric, and it is remembered 
that S ~J may increase as e a when e -+ co, it is found that 

[S ~t~-�89 u -  c2t~)3~ (~,/3= 1,2,3) (6.2a) 
] - e  z/m ~' (a = 1,2, 3, fl = 4) (6.2b) 

P ~  - �89 "~ ~c 2 .. 

L -~ (S" +/~c z) (~ =/3 = 4) (6.2c) 

When the three-space is assumed to be Euclidean, so that S~J~ c2F8~, 
these equations become 

(0 (~,/3 = 1,2,3) (6.3a) 
P ~  - � 8 9  ,,~ {-c2t~u ~ (~ = 1,2,3;/3 = 4) (6.3b) 

[2e4/z (~ =/3 = 4) (6.3c) 
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In the situation usually considered in Einstein's theory, in which the stresses 
S *J are assumed to be negligible, equations (6.2a)-(6.2c) become 

(�89 z l~3~t~ 

P~I3 - �89 "~ ~ -cZ  t m~' 
1,�89 4 I~ 

(a, fi = 1, 2,3) (6.4a) 
(a -- 1,2, 3 ;/3 = 4) (6.4b) 

(a = fl = 4) (6.4c) 

Comparing equations (6.3a)-(6.3c) with equations (6.4a)-(6.4c) it is seen 
t h a t  P44 - �89 is four times as great when the three-space is assumed to 
be Euclidean as it is when the stresses are assumed to be negligible. It is for 
this reason that the assumption that three-space is Euclidean has ted to the 
close analogy between gravity and electromagnetism given in the previous 
section. However, this also requires that i f p ~  is to be equated to a constant 
factor times P~,t~ '~ �89 the factor must be four times as great if the 
stresses are neglected as it is if the three-space is assumed to be Euclidean, 
if both assumptions are to lead to the same non-relativistic approxi- 
mation. 

A further comparison of equations (6.3a)-(6.3c) and (6.4a)-(6.4c) shows 
that the terms Pl4 - �89 have the value - c  2/zu z in both cases, at least to this 
approximation. However, because P~,~ - �89 is multiplied by a different 
coefficient in the two cases, the effect of the fluid velocity u ~ in producing a 
gravitational field is four times as great under the usual assumptions of 
Einstein's theory as it is under the assumptions that have been made here. 
At present there does not appear to be any direct observational evidence 
which gives the magnitude of the effect of u s in producing a gravitational 
analog of the magnetic field, but it is not impossible that such evidence may 
be found in the future. I f  so, it may give a direct indication of which set of 
assumptions is closer to reality. 

The third way in which equation (6.1) differs from equation (5.9), namely, 
that p ~  is replaced by R~,~, is suggested by the fact that the field equations 
then irnply that T~;#  = 0, which was interpreted by Einstein as a law of 
conservation of  momentum and energy. It will now be shown that this 
substitution does not affect the non-relativistic limit of  the equations, 
because P~,/3 and R~/~ have the same limit as c -+ o0. To show this, it is 
convenient to let 

2~ ~ -- R~/3 - P~ t~ (6.5) 

Then, from equation (3.16), noting that 

R ~ v ~  t~ = t . ~  v - t : , r~  

it is easily shown that 

) ~  = --o:2(t;)'y t;~8 -- t:~'~ t;~ v --  t y t;~r~ + t z" t ; ~ )  

--o: 4 t~ t~'(t;t3~ , t;~n -- t ~  t:~),) (6.6) 
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In coordinates in which x4 = t and g,j = ~j,  the reciprocal o f g ~  is given by 

1 
gt~ = ~ + -ggi4gj4 (6.7a) 

1 
g~4 = __ ~ g t 4  (6.7b) 

1 g44 = _ (6.7c) 
g 

and the vector t o* - g~IJ t;~ = g~4 is given by 

1 
t ~ = - -gi4 (6.8a) 

g 

t4  = 1 (6.8b) 
g 

Also, in these coordinates, the second derivatives of t vanish, so that 

t;~,~ = -(c~fl, y) t~' (6,9) 

If  the velocity of light c enters the coefficients g~,~ only through the additive 
constant - c  2 in g44, then it does not appear in the partial derivatives ofg~,o 
or in (~fl, 7). As a result, both t ~' and t;~ ginvolve c only through the multiplica- 
tive factor 1/g. Since g is approximately equal to - c  z, the determinant of the 
flat-space metric, both t ~ and t;~o vanish at least as rapidly as 1/c 2 in the 
non-relativistic limit as c---> oo. This implies that the higher covariant 
derivatives of t, such as t .~y, will also vanish as 1/c z. From equation (3.2) 
and equation (6.8b), it is'seen that ~z z = - g  in these coordinates, so that 
increases like e as c --> oD. From these results it is seen that the quantity in 
the first parenthesis on the right-hand side of equation (6.6) decreases as 
1/e 4, and when it is multiplied by ,2 the product decreases like 1/c z as c ---> oo. 
Similarly, the second term on the right-hand side of equation (6.6) vanishes 
like 1/c a, so that ) ~  vanishes at least as rapidly as 1/c 2, and R~,~ ~ p,,~ 
a s  c ---~ oo. 

The replacement of p~,/3 by R ~  is now seen to be somewhat analogous to 
Maxwell's addition of the displacement current term to the equations of 
electromagnetism. In both cases, a small relativistic correction is added to 
the equations to make them agree with a conservation law, and in both cases 
this correction leads to the prediction of waves. However, the analogy is 
imperfect because the conservation law used by Einstein was the conserva- 
tion of momentum and energy, while the one used by Maxwell was the 
conservation of charge. Furthermore, there is good reason to object to the 
replacement of p~/~ by R ~  because it is interpreted in Einstein's theory to 
imply that three-dimensional space is non-Euclidean, which is a great 
complication of the theory for which there appears to be no observational 
support. Finally, although gravitational waves appear to exist, they have 
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not been measured with enough precision to show that they are exactly the 
waves predicted by Einstein's theory, and it is quite possible that there may 
be a much simpler way of altering the theory to include an adequate 
description of waves. Thus the replacement of p~.~ by R ~  must still be 
regarded as a theoretical conjecture which requires more experimental 
confirmation. Since both Einstein's theory and Newtonian theory lead to the 
Schwarzschild field and Einstein's theory reduces to Newtonian theory in 
the non-relativistic limit, it is clear that this confirmation must come from 
the measurement of relativistic corrections to Newton's theory in fields other 
than the Schwarzschild field. Such evidence is very difficult to obtain, and 
until it is available, the most reliable procedure for improving gravitational 
theory may well be through the unification of gravity with other fields of 
physics, where a great deal of experimental data is already available. 

7. Conclusions 

This paper has given a description of gravity which has the advantage over 
Einstein's theory that it proceeds one step at a time from the most firmly 
established facts of Newtonian theory to the theoretical conjectures of 
Einstein's theory, and the degree of motivation for each step can be assessed 
independently of the others. The philosophical and predictive advantages 
of Einstein's theory have been retained by adhering to Einstein's description 
of gravity in terms of a curved Riemannian four-space whose geodesics are 
the paths of particles and light rays. However, the complexity of Einstein's 
formalism has been greatly reduced by retaining throughout the analysis 
the assumption of Newtonian theory that three-dimensional space is 
Euclidean, with the result that the field is described here by only four 
unknown metric coefficients. 

Attention has first been given only to the particular class of fields given 
by equations (2.7a)-(2.7c), which correspond to the fields of Newtonian 
gravitational theory. These fields include the Schwarzschild field, so that 
this description of gravity not only reduces to Newtonian theory in its 
nonrelativistic limit but also gives all of Einstein's corrections to Newtonian 
theory in the Schwarzschild field. The conditions that must be met in order 
that a metric tensor will describe a Newtonian field in which the potential 
function V satisfies Poisson's equation have been formulated in generalized 
space-time coordinates in equation (3.17). Since equation (3.17) is an exact 
description of such a field, there is a strong motivation for believing that it 
must be very nearly satisfied by many of the most important fields that occur 
in nature. 

The Lorentz invariance of this formulation has then been investigated by 
considering the transformation properties of the field equations under the 
generalized form of the Lorentz transformation which has been developed 
previously, and it is shown that equation 0.17) takes the same form in all 
Lorentz frames only if K/~ is assumed to be an invariant function. Since it 
is known from the special theory that /~ is not an invariant function, 
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equation (3.17) must be modified if it is to agree with the known trans- 
formation properties of the mass density. This can be done by replacing 
equation (3.17) by equation (4.2) in which A and B are unspecified constants. 
This equation reduces to Newtonian theory in the non-relativistic limit as 
c -+ co if the stress components are assumed to be such that the three- 
dimensional geometry is Euclidean and the coefficient A is given by equation 
(4.12). The coefficient B cannot be determined from the non-relativistic 
approximation of the theory, nor can it be determined from measurements 
of the relativistic corrections to Newtonian theory in the exterior Schwarz- 
schild field, because this field is an exact solution of equation (4.2) in the 
region in which P,  fl vanishes. Thus there appears to be no observational 
evidence from which the value of B can be deduced. 

However, if there is to be any real hope of unifying gravity and electro- 
magnetism, then it is desirable to formulate gravity in a way which is not 
only an accurate description of the observed facts but which is also closely 
analogous to classical electromagnetism. The fact that electromagnetism 
is a linear theory suggests that it may be a weak-field approximation of the 
unified field, and hence should be a close analog of the weak-field approxi- 
mation of gravity. Such a close analogy has been shown to exist here if 
B =-�89 in which case the field equations are given by equation (5.9), 
which becomes equations (5.10a) and (5.10b) in coordinates in which 
x4 = t. The motivation for these equations is very strong if it is assumed that 
there is a close analogy between gravity and electromagnetism, but this is 
an assumption of simplicity which is not based directly on observation. 

One of the most important differences between this description of gravity 
and Einstein's theory is that the stresses have been defined here so that the 
three-dimensional geometry is Euclidean, whereas the stresses are usually 
assumed to be negligible in Einstein's theory. As a result, the quantity 
P~-  �89 on the right-hand side of equation (5.9) is approximately 
given by equations (6.3a)-(6.3c) instead of by equations (6.4a)-(6.4c), as 
would have been the case if the stresses had been neglected. This reduces the 
numerical coeffi6ient of the momentum density in the field equations to 
approximately one-quarter of the value that it has in Einstein's theory, and 
thus leads to a much closer analogy between gravity and electromagnetism 
than exists in the weak-field approximation of Einstein's theory. An 
experimental measurement of the effect of a momentum density in producing 
a gravitational analog of the magnetostatic field has not yet been made but 
may become possible in the future. 

The other major difference between the present description of gravity and 
Einstein's description is that the tensor p~fl is replaced by R~fl in Einstein's 
theory. This makes it possible for three-space to be non-Euclidean in 
Einstein's theory even in regions in which the total stress-energy-momentum 
tensor vanishes. This greatly increases the complexity of the theory in a 
way that is presently supported by observation only to the extent that 
replacing P~t3 by R~fl is one possible way of explaining the existence of 
gravitational radiation. Since there may be much simpler ways of including 
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grav i ta t iona l  r ad ia t ion  in the theory,  this change must  still  be regarded  as  
a theoret ica l  conjecture.  
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